TOP
INFORMATION & PAPER
정보광장
정보광장
INFORMATION & Paper
Home > 정보광장 > ddPCR
Droplet Digital polymerase chain reaction

[ Title ]

- Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen- and TaqMan-based chemistries

[ Journal ]

- Cancer Epidemiol Biomarkers Prev

[ Author ]

- E. S. Miotto, E.Lupini, L.Callegari, E.Negrini, M.Ferracin, M.

[ Year ]

- 2014

[ Volume ]

- 23

[ Pages ]

- 2638-42

[ Abstract ]

- Droplet digital PCR (ddPCR) has been successfully used with TaqMan assays to assess gene expression through the quantification of mRNA and miRNA. Recently, a new ddPCR system that can also run DNA-binding dye-based assays has been developed but it has not yet been tested for miRNA. We tested and compared the feasibility of quantifying miRNA with the new QX200 Droplet Digital PCR system when used with EvaGreen dye- and TaqMan probe-based assays. RNA from plasma and serum of 28 patients with cancer and healthy persons was reverse-transcribed and quantified for two circulating miRNAs and one added exogenous miRNA, with both EvaGreen dye-based miRCURY LNA miRNA assays and TaqMan assays. Amplification and detection of target miRNAs were performed on the QX200 ddPCR system. Conditions required to run miRCURY LNA miRNA assays were optimized. The EvaGreen-based assay was precise, reproducible over a range of concentrations of four orders of magnitude, and sensitive, detecting a target miRNA at levels down to 1 copy/muL. When this assay was compared with TaqMan assays, high concordance was obtained for two endogenous miRNAs in serum and plasma (Pearson r > 0.90). EvaGreen dye-based and TaqMan probe-based assays can be equally used with the ddPCR system to quantify circulating miRNAs in human plasma and serum. This study establishes the basis for using EvaGreen dye-based assays on a ddPCR system for quantifying circulating miRNA biomarkers and potentially other low-abundance RNA biomarkers in human biofluids. See all the articles in this CEBP Focus section, "Biomarkers, Biospecimens, and New Technologies in Molecular Epidemiology."

[ URL ]

-